If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2-30=24
We move all terms to the left:
6x^2-30-(24)=0
We add all the numbers together, and all the variables
6x^2-54=0
a = 6; b = 0; c = -54;
Δ = b2-4ac
Δ = 02-4·6·(-54)
Δ = 1296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1296}=36$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-36}{2*6}=\frac{-36}{12} =-3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+36}{2*6}=\frac{36}{12} =3 $
| (x+20)+(2x-40)+(2x-20)=180 | | -32=4(x-6 | | (x+20)+(2x-40)+(2x-20)=180 | | 52+2p=7 | | 10=2(x-4 | | (x+30)+(x+10)+2x=360 | | 25x2+25x-36=0 | | (2t)3=8 | | 3x-2/x-4=7 | | x¬-2=0.0625 | | 3x+20+40=18 | | 169x2+196=0 | | x^-2=0.0625 | | (2x+7)-3=12x+5 | | 25=-3v+4 | | x+x+20+x+40=18 | | 30=-5(2a-7) | | x+5-2x+15=-x+4x | | x2+5x+25=0 | | x+x-30+50=180 | | A-5=a-21 | | 6(3-h)-6=5h | | (2x+7)+2(4-5x)=1 | | -6x+12=-6x+12 | | 9=1.6(x+5) | | 41=-6-77z | | 7x+3=−4 | | 6c+14=-10 | | w/3+1.3=-6.2 | | 15y-3=5y-1 | | 7x+4-3x=0 | | 4n+22=-4 |